Populations of sea trout \textit{Salmo trutta} m. trutta L., cod \textit{Gadus morhua} L. and mussels \textit{Mytilus} spp. from the Baltic Sea were studied using SNPs (single nucleotide polymorphisms) genotyping methods, next generations sequencing, gene expression using HRM (RT-PCR) and 44K-oligo microarray.

SEA TROUT

South East Baltic populations (from Poland, Lithuania, Denmark, Bornholm, Estonia and Russia) were genotyped with iPLEX Gold Sequenom method using a diagnostic panel of 23 SNPs. The highest level of pairwise Fst differences was observed between Russian population from East Gulf of Finland and Polish populations from the Baltic Main Basin and the lowest differences were between both Polish, and Polish and Lithuanian populations.

Genetic differentiation

Genetic structure analysis

The NJ tree was constructed using the Not I’s distances among the nine sea trout populations.

44K-oligo microarray

Differences in gene expression in hatchery \textit{Salmo trutta} m. trutta and \textit{Oncorhyncus mykiss} under stress caused by infection with a bacterial pathogen \textit{Aeromonas salmoneicida} spp \textit{salmoneicida} and non-infected were observed. Some genes were up-regulated (chaperones, mainly HSPs, Mx, interleukin IL17D a proinflammatory cytokine) and down-regulated (acute phase proteins, chemokines, cytokines, COX, lectins, lectin receptors and inflammation related proteases, TNF-related and aporotic proteins and other) as found by the application of transcriptome hybridisations to 44K-oligo-microarray (Agilent).

COD

Populations of Baltic cod were studied using 5 SNPs. According to the obtained HRM (high resolution melting) results populations of the cod were characterized by clinal variation of alleles at loci known to be linked with salinity gradient. The obtained results confirm that eastern population of cod is a separate one.

Exposure of cod from western (Kiel) and southern (Gdansk) Baltic to different salinity ranging from 3 to 33ppt. revealed its high tolerance to different environmental conditions. This tolerance is being studied at the level of gene expression and high number of SNPs.

MYTILUS SPP.

Baltic populations of \textit{Mytilus} spp. are locally adapted, with a unique composition of loci derived from \textit{M. trossulus} and \textit{M. edulis} genomes. To identify markers and genes associated with the hybrid zone in Danish Straits and to determine the uniqueness of Baltic populations, 60 polymorphic SNPs were used to genotype individual mussels from the Baltic, North Sea and Canada. In total 35 SNPs turned out to be significant in FST outlier analysis and therefore were clearly related to the interactions with environment. The majority of new SNPs show greater participation of \textit{M. trossulus} than \textit{M. edulis} genes in the nuclear DNA of Baltic \textit{Mytilus}.

The locations and acronyms of 23 European \textit{Mytilus} sampling sites. Structure results for the populations for K = 3 are presented in pie diagrams. These proportions are Q values.

The geographic locations and acronyms of 27 Mytilus sampling sites in the Baltic and North Sea.

GENETIC RESOURCES OF FISH AND SHELLFISH POPULATIONS IN SOUTHERN BALTIC SEA

Roman Wenné, Anita Pończwierz-Kotus, Agnieszka Kijewska, Magdalena Warzecha, Aleksei Krasnov, Małgorzata Zbawicka, Matthew Peter Kent and Sigbjørn Lien

1. Institute of Oceanology, Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland (E-mail: rwenne@iopan.gda.pl)
2. Nofima Marin, P.O.Box 5010, Ås 1430, Norway
3. Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway